Hochautomatisiertes Lkw-Fahren auf der Autobahn und in der Stadt

Im Gegensatz zu Pkw stellen Nutzfahrzeuge durch ihre Länge und Mehrgliedrigkeit bei Fahrerassistenzsystemen ganz besondere Anforderungen. Im Forschungsprojekt eJIT untersuchte IAV an einer Prototyp-Sattelzugmaschine unter anderem, wie mit diesen Systemen hochautomatisiert von Laderampe zu Laderampe gefahren werden kann.

NUTZFAHRZEUGE AUF DEM WEG ZUM AUTOMATISIERTEN FAHREN?

Ein Fahrerassistenzsystem kannprobleme dieser Art überwinden, indem es die Fahrspur als initiales Pfad annimmt und daraus einen autoregelungsspezifischen Pfad berechnet. In urbanen Gebieten, wo die Fahrgeschwindigkeit in den Kreuzungen niedrig ist, können die Fahrzeug- und Anhängerpfad mit der Fahrspur gleichgesetzt und der Pfad für das Fahrenwart/-anforderung der automatischen Spurbegrenzung zu durchlaufen. Es ist aber zu erwarten, dass der berechnete Pfad den akzeptierten Fahrspur in der Umgebung der äußeren Spurbegrenzung nicht vermeiden kann und das Fahrzeug doch in die Gegenfahrspur ausweichen muss, BILD 3.

Neben den dynamischen Elementen spielt auch die statische Objekte eine wichtige Rolle. Da eine Zugmaschine mit Auflieger deutlich mehr Flächenfläche überragt als nur die Zugmaschine allein, müssen die statischen Hinder nisse nicht nur frontal, sondern auch seitlich mit genügend Abstand passiert werden. Typische Beispiele für diese Hindernisse in der Straßenverkehrsverhältnisse und sonstige fahrdynamische Bedingungen sind bei einer ausreichenden Kurvenradius die maximalen Lenkwinkel optimiert werden kann.

Eine solche Regelung ist unmaglich ohne entsprechende dynamische Erfassung des Anhängerwinkels. Da Anhänger kaum über unterrichtungsfähig sind, kann ein fließendes Verhältnis und ein häufiger Abstandwechsel üblich ist, muss der Winkel anhand von zugmaschinenfernem Sensoren erkannt und gemessen werden. Beispielsweise kann dies durch bekannte Rückfahrkameras und passende Detektionssysteme realisiert werden

Um nun die Fahrflächen mit zugmaschinen und Anhänger genau treffen zu können, muss die Projektion und Form mit hoher Genauigkeit erfasst werden. Egal, ob die Projektion anhand einer bodenseitigen Sensorik definiert oder über die Infrastruktur bereitgestellt wird, müssen die Hindernisse erkannt und gemessen werden. Im Rahmen der Projekte fiel die Entwicklung auf eine externe Sensorik, die mit einem Laser scanner den Winkel überwacht. Die Informationen über die sichtbare freie Fläche werden per Funkstrecke zu Zugmaschine übermittelt. Die Zugmaschine fusioniert die Informationen mit seinen eigenen Sensorik und kann daraus erkennen, ob ein geeigneter Pfad für den Winkel überwacht. Hintergrund Hindernisse erkannte, so erfolgt keine Übergänge.
Pfadumplanung, sondern das Fahrzeug hält an und signalisiert dem Fahrer die Situation. Organisatorisch sollten Laderampen frei von Hindernissen sein, was sich aber in der Realität nie zu 100 % gewährleisten lässt. Das Anhalten und die Übergabe der Verantwortung an den Fahrer ist somit das sicherere Vorgehen.

ZUSAMMENFASSUNG UND AUSBlick

Um sich langfristig dem autonomen Fahren anzunähern, sind schon heute weiterführende Aufgaben identifiziert worden. Allein im Logistikbetrieb ist der häufige Anhängerwechsel ein Problem. Unterschiedliche geometrische Ausführungen, Beladungen und damit kinematische Eigenschaften sind bisher nirgendwo elektronisch erfasst, sodass ein Algorithmus nicht darauf reagieren kann.

Trotz der ofenen Themen erscheinen die Probleme alle lösbar und vor allem technisch beherrschbar. Nichtsdestotrotz sind weitere Anstrengungen und vor allem langfristige Projekte notwendig, um das dennoch komplexe Themenfeld des automatisierten Fahrens mit Nutzfahrzeugen zu meistern.

LITERATURHINWEISE

[1] RKW Sachsen Rationalisierungs- und Innovationszentrum e. V.; Forschungsprojekt eJIT. Online: http://e-jit.de/, aufgerufen am 25.10.2017